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Certain model problems of optimal correction of motion of a system subject not only to con- 
trolling forces, but also to uncontrolled forces (disturbances), are investigated. The mea- 
surement errors are not taken into account. It is assumed that the disturbances are active 
end have the most unfavorable effect from the controller’s standpoint. The problems are sol- 
ved in minimex (gameatheoretical) formulation, and the resulting optimal solutions are of 
guaranteeing character. As compared with the conventional statistical approach, the mini- 

max method has certain drawbacks (the minimax strategy is sometimes over-cautious) as 
well as several advantages: 1) knowledge of the probabilistic characteristics of the distur- 
bances, which are often unknown, is not required; 2) the minimax approach is applicable 
even in cases where the disturbances are produced by the active apponent; 3) the result 
afforded by the minimax approach is more reliable. 

Several variants of correction problems in which both the controlling forces and the die- 
turbances CM be either pulsed or bounded are investigated. The solutions obtained are used 
to draw certain qualitative conclusions concerning the relative effectiveness of continuous 
end pulse correction. 

1. Formulation of the problem. Let the motion of a controlled system be des- 
cribed by the differential equations and initial conditions and restrictions 

dx’ / dt’ = y’. dy’/dt’ = u’ + v’, 2’ (0) = y’ (0) = 0 

T T 

s 
‘Iu’(~‘) Idt’<p, Ilv’(t’)ldt’<q (W 

0 0 

Here t’ is the time, x’is the generalized coordinate vector, y ’ is the velocity vector, u’ 

is the controlling force vector, u’is the disturbing force vector, T is the prescribed time of 
termination of the process, and p and Q are the prescribed total magnitudes of the correction 

end disturbance force pulses. All of the vectors in (1.1) are of arbitrary (but the same) di- 
mensionality. 

Eqs. (1.1) can be regarded es equations in variations relative to some unperturbed nominal 
system trajectory. 

We are required to choose the control u’(t’) over the interval [O, ~‘1 in such a way es to 
minimize the len 
minimize (x’(T) f 

th of the generalized coordinate vector et the end of the process, i.e. to 
. We essume that the disturbances v’(t’) are chosen on the baais of the 

maximization condition for the functional 1 x’(f)1 . In other words, we consider the problem 
in minimax (games-theoretical) formulation. We assume that both of the controlling players 
can measure the present coordinates x’and velocities y’of the system exactly et each in- 
stant. 

Let us convert to dimensionless variables which we denote by unprimed letters, 

1% 
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t’ = Tt, x’ = qTx, y’ = qy, u’ = qT-h, v’ = qT -iv, p = qls (1.2) 

Expressed in terms of variables (1.21, relations (1.11 become 

dxfdt = y, dy/dt=u+v, 

(f.3) 

The control a(t) must be chosen from the minimization condition for the functional 

1x(1)(; the d is ur t b ante v(t) must be chosen from the maximization condition for this func- 
tional. In addition to conditions (1.3). we also impose the following restrictjons on the 
choice of the functions u and v: these functions are either bounded in absolute value, or 

they are of a single-pulse character. In order to satisfy integral restrictions (1.31, we re- 

quire fulfillment of the inequalities 

lu(t)[<k. Iv(t)l<l for 0616i 

in the former case, and set 

U(t)= Ub(t- z), v (1) = V6 (t -- 0) (IfJi<k, II’l<f) 

in the latter case. 
Here 6 is a delta function, 7 and 9 are arbitrary instants in the interval [O, 11, and U, V 

are constant vectors. We shall solve the problem for various combinations of these restric- 

tions and without them. 

2. Continuous correction of a continuous disturbance. Let the con- 

trolling functions in (1.3) be subject to the restrictions I u(t) I ,( k, I v (t) 1 5 1 for 05 t < 1. 

The correction problem then reduces to a differential games problem [ll for system (1.31 
with the functional ( x (1)) . 

This problem can be solved readily by elementary argument, without resorting to differ 
ential games theory. First, let k 2 1. Since both players have complete information on the 
motion of the system, the controlling player (controller) can ensure fulfillment of Eq. u (tl- 
=- u (t) with any degree of accuracy for all t. 

The functional of the problem in this case is I, (k) = I z (1) I = 0, where the subscript de- 

notes the number of the case under consideration. If k < 1, then, clearly, it is best to make 

the control of maximal magnitude and to direct it opposite to the disturbance. The distur- 

bance in this case is of maximal magnitude; its direction is arbitrary, but constant (there 

is no need to vary its direction in view of the availability of complete information). 

Hence, u = - ke, v = c for all t, where e is an arbitrary un’t vector. The functional in 

this case is given by /t (kl= (1 - k)/2. Thus, the functional 1 x (1) I for optimal correction 
in the case just considered is 

J;z=(~-_)/~ for O<k<l, Jl=O for k>i (2.1) 

3. Pulse COrredlpn Of a continuous disturbance. The disturbance is 

restricted by the condition I u(t)l 5 1 for O_< t _< 1 as above; the correcting control is of the 
form u(t) = U8(t - T), where the vector II at the correction instant 7 is chosen from the 
domains I II I < k , 0 ,< 71 1. The functional I, in this case is given by Eq. 

J, = min max miu max 1 z (1) 1 
+ v[O.+l u 0 [z. 11 

(3.1) 

The sequence of extrema in this case conforms to our hypothesis whereby both sides am 
completely informed. Fe shall compute the extrema in (3.1) by working backwards. To deter- 
mine the last maximum in (3.11 we must solve the problem of optimal control of the system 

dxfdt = y, dy / dt = v, Ivl\<l (3.2) 
in the interval [T, I] under the initial conditions and with the functional 
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t (7) = z+, Y (4 = Y+* z. (1) = - z2 (I) -+ min 

dz,/dt = - 2 (x, Y). 20 (7) = - (x+)2 (3.3) 
Hsrex+=x(T+o),~+ I y (T + 0) arc the values of the coordinates and velocities im- 

medfately following pulse correction; x0 = - x1 is an ancillary phase coordinate whose deri- 

vative h cotnpnted In accordance with Eqs. (3.2). The parentheses denote scalar products. 

In accordance with the maximnm principle [2], we introduce the vectors of the conjugate 

varfables pz and p, associated with the vectors x and y, and construct the Hamiltonian, 

conjngate equations, and transversality conditions for problem (3.2). (3.3). 

11 = @z* Y) + @“, 0) + 2 (9.9 Y), dpX/dt =-2y 

dp,/dt = -ppIlc-- 2x, P*(i) = P,(l) = 0 
(3.4) 

AB usual, we assume that p. 3 - 1. From equations and boundary conditions (3.21, (3.4) 

we obtain successively 

dp,fdt =-2dx/dt, P,(1) = 2 [J(l)---z(t)l 

dp,,)dt =-2x(l), P,“(t) = 2. (1) (1 - t) 
(3.5) 

By virtue of the condition of maximality of the function H with respect to V, the vector 
u ia colinear with the vector p, and equal to its maximal value 1 WI = 1 in magnitude. Since 

(by (3.5)) the vector p,, is of constant direction, it follows that v ft) = f for 7 ,< t < 1, where 

f is a constant unit vector. Integrating system (3.2) under initial conditions (3.3), we obtain 

z (1) = 5+ + y+ (1 - T) + f (1 - T)2 / 2 (3.6) 
We choose the vector 

f 
on the basis of the maximality condition for the expression for 

~~(1) as defined by Eq. 3.6). Maximizing, we obtain 

1= Is’+Y+(1--)]~jI++Y+(1--)I 

P(1)l= Iz’+y+(1--)l+ (I----)?/2 (3.7) 
We set x+= x-, y += y- + U in relation (3.61, where Z-= ~(7 - 0). y- = y (T - 0) are the 

values of the coordinates and velocities immediately prior to correction. This yields 

I = (1) I = (1 - T) I s + u I + (1 - z)2 / 29 s = y.- + x- / (1 - %) (3.8) 
Let ns find the minimum of the expression for ( x (I)1 from (3.8) on the basis of the vec- 

tor (U 15 k in accordance with (3.1). It is easy to show that the minimizing vector II and 

the minimal value of Jx(l)l are given by 

u s--s; b(l)1 = (1 --)“/2 for ]s]<k 
(3.9) 

c =-&/Is/, W)l= (1 -~)(~s~-k)+(1-~)2/2 for IsI> k 
From Eqs. (3.9) we see that I x (1) I depends monotonously on 1 s I. To compute the first 

maximum in (3.1) it is safficient to solve the problem of optimal control of system (3.2) in 

the interval [0, 71 with zero initial conditions (1.3) and maximizing functional I s I. The 

solution of this problem can be obtained by taking account of the self-evident inequality 

mel 1 s 1 < mox 1 y (-t - 0) 1 + (1 - T)-~ max 1 x (z - 0) 1 
Clearly, each individual maximum in the right side of this inequality is attained if the 

control v in system (3.2) with zero initial conditions (1.3) is taken to be of maximal magni- 
tode and arbitrary but constant in direction. Hence, the maximum of I s I is attained if we 

take v = e for O_< t 5 7, where c is an arbitrary constant vector of unit length. Integrating 

system (3.2) and computing e from Formula (3.8) and I x (1) 1 from Formulas (3.9). we obtain 

Y- = Qc, x- = er2/2 

jS(l)l = (l-T)?/,2 for ISI<k,’ 

I s I = T + 72 [2 (1 - z)l-1 (3.10) 

~~(1)~=‘/~-k(l-~) for lrl>k 
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It ia easy to ahow that 1 l 1 depends monotonously on 7, and that the minimom of 1 x (1) 1 
with respect to 7 from the interval [0, l] ia attained when 1 .a I = k. From thin condition and 

relationa (3.10) we obtain the optimal correction instaut T, end functional (3.1) for the caee 

under consideration, (3.11) 

w=1+k-V-, Ja = (i -Q/2 = (1 + 2k’-2kvl + k9)/2 

4. Contlnuonm correction of a pulse disturbance. The control and dia- 
turbauce are rent&ted as follora: 1 II (t) I 5 k for 05 t ,< 1 and v = V8 (t - 6 ), where 1 Y 1 L 
s 1, 026s 1. It ia clear that correction munt not be made prior to the action of the distur- 
bance, i.e. that a P 0 for 0 < t < 8. It in also clear that we must proceed on the basis of a -- 
maximal diaturbauce pulse, i.e. Y = a, where e is a unit vector of arbitrary direction. The 
motion of the eyetem following the action of the disturbance, i.e. for t 2 6, is described by 
the equations and initial conditiona 

dx / dt = y, dy / dt = u, b (t) I < k! 5 ((9 = 0, y (e) = e (4.1) 

It is clear that optimal correction requires that the control u (t) be directed opposite to 
the disturbance pulse and that it be of the maximal magnitude k, i.e. that u = - ke. if.the 
deviation of ! x (1) I at the end of the process cannot be reduced to zero. Hence, integrating 
Eqs. (4.1), we obtain 

I~(~)~~(~-~)-k(l-f3)2/2 for i-~---~(i-t3)~/2>0 

lZ(l)l=O for i-6-k(f--6)?/2<0 
(4.2) 

The latter case corresponds to the situation where the disturbance can be neutralized 

completely. Determining the maximum of Expression (4.2) for 1 x (1) 1 with respect to 8 from 
the interval [O, 11, we obtaia the diatnrbauce instant 8, least favorable from the correction 

standpoint and the associated minimax value of the functional I, = 1 z (1) 1 in the carte under 

consideration, 

0 *=O, JS=l-k/2 for 06k<1 

8 3=1-1/k, J,=i/2k for k&l (4.3) 

3. Pullre correction of a pulse disturnance. We set u = U8(t - 7), v = 
S l’s (t -6 ), where I U 1 Sk. I VI _< 1, 0 < 7, 8 ,( 1. If k 2 1, then the disturbance can be com- 

pletely neutralized with any degree of accuracy by setting II = - V, T = 8. In order to obtain 

the minimax solution in the case k < 1 we must clearly set l’ = c, (I = - ke, where e is au 

arbitrary unit vector (as above). According to Eqs. (1.3). the deviation at the end of the pro- 

ceaa ia 

1 x (1) 1 = 1 - 8 - k (1 .- T) 
First let ua find the minimum of this quantity with respect to 7 for 65 71 1 (correction 

is effected only after the direction of the disturbance ia determined), and then its maximum 

with reepect to 8 for 05 6_< 1. We then obtain the optimal instanta of disturbauce and cor- 

rection aud the value of the functional, 

G =tl,=O, J,=i-_k for O<k<i, Jd =O for k>i (5.1) 

Thus, in this case (in contra61 to the two preceding one3 both the disturbance and the 

correction are bemt effected at the beginning of the process. 

6. Di8~118610n Of the fesults. Comparing Eqa. (2.1) and (3.11), we cau see 
that I 21, for 0 5 k 5 3/4 and / ,I I, for k 2 3/4. Hence, if the disturbance ia continuous 

(b dd’ ouu e tn absolute value), then it is more expedient to employ pulse correction for k ,< 3/4 
and continuous correction for k >_ 3/d In other words, if the total correction force pulse is 

sufficiently large fk x3/41, then it is advisable to expend it gradually, effecting more pre- 

cise continuous correction of the continuous disturbance. If the total correction pulse is 
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small, it is better to concentrate it in a single pulse. Relations (4.3) and (5.1) imply that 

I, 21, for all k, i.e. that in the case of a pulse disturbance pulse correction is always 

more expedient than continuous correction. We note, moreover, that I, (k) = 0 only for i = 1, 
i = 4 and k 2 1, i.e. that exact correction is 
possible in those and only in those cases where 
it is of the same character as the (continuous 
or pulse) disturbance,,and when the total pulse 
is sufficiently large. The Fig. 1 shows the 
functions I, &I as given by relations (2.1). 
(3.11). (4.3). and (5.1). where the number i = 1, 

2, 3, 4 is indicated next to each curve. 

7. Solution without restrictions. 
Fig. 1 In conclusion, let us solve the problem of the 

minimax of the functional I = ) x (111 for system (1.3) under integral restrictions (1.3) only, 
i.e. without any of the additional restrictions imposed in Sections 2 to 5. If k 2 1, then. as 
in Sections 2 and 5, we can choose our control in the form u (t) = - v(t) in the interval 05 
rs l., so that in this case I = 0. If k < 1, then the minimax solution requires that the dis- 
turbance and control be of constant and opposite direction, i.e. that u = 1 u 1 e, u = - 1 u ) c, 
where c is a constant unit vector of arbitrary direction. Then, integrating Eqs. (1.31, we 

obtain 

This relation and integral restrictions (1.3) imply that the minimax of the functional 

1 x (1)) is attained with a pulse disturbance and pulse correction, with both pulses applied 

at the beginning of the process. Thus, we have u = e 8 (I), a = - kc 6 (t). The resulting sol- 

otion soincides fully with that of Section 5 for the case of pulse correction of a pulse dis- 
turbance. In particular, I = I,, where J4 is given by relation (5.1). 

1. 

2. 
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